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A novel method for computing chemical similarity from chemical substructure descriptors is
described. This new method, called LaSSI, uses the singular value decomposition (SVD) of a
chemical descriptor-molecule matrix to create a low-dimensional representation of the original
descriptor space. Ranking molecules by similarity to a probe molecule in the reduced-
dimensional space has several advantages over analogous ranking in the original descriptor
space: matching latent structures is more robust than matching discrete descriptors, choosing
the number of singular values provides a rational way to vary the “fuzziness” of the search,
and the reduction in the dimensionality of the chemical space increases searching speed. LaSSI
also allows the calculation of the similarity between two descriptors and between a descriptor

and a molecule.

Introduction

Pharmaceutical companies produce and license large
numbers of chemical compounds. This valuable resource
is even more valuable if it can be effectively mined for
new leads. One mining method, similarity searching,
starts with a “probe”, a molecule with interesting
biological activity. The goal is to find other molecules
in chemical databases similar in structure to the probe,
hopefully with similar activities. This idea was reified
as the “similar property principle” by Johnson and
Maggiora® in 1990, and similarity searching has become
a standard tool for molecular modeling.1~11 Such search
methods rank database molecules by decreasing simi-
larity to the probe. After computing this ranking, the
user of the system typically selects some number of the
top-ranked molecules for further study. This task is
often complicated by the fact that the goal is not only
to identify untested molecules that have the desired
biological activity but also to find molecules that are
structurally novel relative to the probe.

There are many possible representations of chemical
structures, and the choice of representation is at least
as important as the choice of similarity measure.
Suitable representations include ones based upon to-
pological (2D), geometrical (3D), and/or physicochemical
(log P, surface area, etc.) descriptors.4~7 Advantages
and disadvantages are found for each of these descrip-
tors. For example, while methods using topological
representations are usually computationally less ex-
pensive than those using geometrical representations,
topological descriptors may not be expressive enough
to capture the stereochemistry or conformational prop-
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erties of molecules. Recent efforts have investigated
techniques to combine the results of several descriptor
types.*8

Much research has been carried out to explore new
representation schemes and to compare their success
in ranking active molecules from a database by their
similarity to a probe or by their success in clustering
actives.? One very practical approach to describing
molecules is the vector space model popularized by
Willett.2 This method involves representing a molecule
as a set of 2D or 3D substructures and their frequencies.
Sometimes only the presence or absence of a substruc-
ture is noted, as in molecular fingerprint methods.
Similarity searches with the vector representation are
very practical because comparing lists of precomputed
vectors is computationally inexpensive.

One property of vector models is that the substructure
features are treated as completely independent. The
presence of related but not identical descriptors does
not make any contribution to increasing the similarity
score between two molecules. This is contrary to the
experience of medicinal chemists who readily recognize
that certain features may be at least partially equiva-
lent. Therefore, it is possible that treating descriptors
as independent will cause some interesting molecules
to be missed in similarity searches. The method we
present in this manuscript, Latent Semantic Structure
Indexing, or LaSSlI, attempts to overcome this deficiency
by automatically uncovering related descriptors and
using them in the calculation of similarity.

In this paper we present the following: (1) the
mathematical underpinnings of the LaSSI approach,
which were inspired by latent semantic indexing, a
method used in document retrieval; (2) the methodology
for calculating chemical similarity; (3) extensions to the
basic methodology; (4) a straightforward small example
to illustrate LaSSI. A detailed analysis of the application
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of LaSSI to searching a large database of drug-like
molecules can be found in our companion paper.'?

Mathematical Background

The mathematical underpinnings of LaSSI were
inspired by Latent Semantic Indexing (LSI), a document
retrieval technique originally described in Deerwester
et al.l1® LSI addresses a problem plaguing keyword
search algorithms, that of synonymy. Synonymy is the
phenomenon that many words in English, and in other
languages, have similar meanings. This becomes a
problem when the user of such a system chooses a
different synonym in his/her query than was used by
the authors of relevant documents. For example, a
search for documents about automobiles using the
keyword “automobile” would miss documents that do not
use that term but instead use the terms “car”, “motor-
car”, “motor-vehicle”, or “horseless carriage”. The prob-
lem is that the string of characters “car” does not match
the string of characters of the term “automobile”; hence,
car and automobile are treated as unrelated terms.
Synonymy is typically handled through the construction
of thesauri that are later used to expand the query to
include the synonyms of each term. Unfortunately,
thesauri are difficult to build, and one is never sure they
are complete or contain no errors.

LSI alleviates this problem by automatically uncover-
ing statistical relationships between the terms found in
a collection of documents. For instance, “automobile”
and “car” would each co-occur in the same documents
with words such as “gasoline”, “road”, and “engine.” This
would point to a relationship of “automobile” and “car”.
These relationships can then be used to calculate
similarities between terms and documents and between
documents and documents that exploit related terms as
well as exact matches. It is our belief that this approach
can be used to overcome the problem of related descrip-
tors in the chemical domain. We will now describe the
mathematics behind LSI and LaSSI.

LSI represents a collection of text documents as a
term—document matrix. LaSSl, on the other hand, uses
a chemical descriptor—molecule matrix. Hence, the
nature of the input matrices for LaSSI and LSI are very
different, but the mathematical treatment of these
matrices is the same. Later we will see that the
calculation of similarities made by LSI and LaSSI is
related but somewhat different.

A collection of molecules in a chemical database is
initially represented as a set of vectors, where each
vector vi = (dyj, dyi, ..., dni)T consists of the nonnegative
frequency of occurrence of each descriptor j in molecule
i and where n is the total number of uniquely occurring
descriptors in the entire set of molecules. A chemical
descriptor—molecule matrix, X, therefore, is a set of two
or more such vectors, i.e., X = {Vvy, ..., Vm}, Where the
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Two implicit choices have already been made that we
will now attempt to justify. First, the choice to use the
raw frequency of descriptor occurrence has been chal-
lenged in the document retrieval literature. Modifica-
tions of the frequency counts by multiplying them by
the inverse document frequency (IDF), calculated as the
log(collection size/number of documents containing the
term) or various measures of informational entropy,
have been reported to improve the recall and precision
of ranked documents using these techniques.* It is our
belief that these modifications were motivated by the
poor performance of some queries for which we have a
different remedy and which will be subsequently ex-
plained. Furthermore, we have not experienced the
same improvements in recall and precision in the
chemical similarity domain and hence are satisfied with
the raw descriptor frequencies.

Second, no pretreatment of the matrix X, such as
mean centering, variance scaling, or vector size nor-
malization, is performed. Each value of the matrix
represents an integer descriptor frequency and thus the
scales of the descriptors are commensurate; scaling and
centering are unnecessary. Also, size normalization,
calculated by dividing each dj; by the total length of the
molecule i, is not performed because our goal is often
to find novel molecules whose size differs from the
original probe molecule(s).

LaSSI employs the singular value decomposition
(SVD) of X to produce a reduced-dimensional represen-
tation of the original matrix. The SVD technique is well-
known in the linear algebra literature!® and has been
used in many scientific'6” and engineering®® applica-
tions, including signal and spectral analysis. Here we
show a novel application of SVD to the problem of
calculating chemical similarity, though a report describ-
ing the use of SVD to support the visualization of
chemical similarity has been recently reported.1®

Let the SVD of X in R™" pe defined as X = PZQT
where P isan x r matrix, called the left singular matrix
(r is the rank of X), and its columns are the eigenvectors
of XXT corresponding to non-zero eigenvalues. Q isam
x r matrix, called the right singular matrix, whose
columns are the eigenvectors of XTX corresponding to
non-zero eigenvalues. X is a r x r diagonal matrix =
diag(o1, o2, ..., or) whose non-zero elements, called
singular values, are the square roots of the eigenvalues
and have the property that o1 = 02 = ... =2 0y
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LaSSI

The kth rank approximation of X, Xy, for k < r, where
ok+1 ... Oy are set to 0, can be efficiently computed using
variants of the Lanczos algorithm.20 X, called the
partial SVD of X, is the matrix of rank k which is the
closest to X in the least-squares sense. It is generated

by:
— T
X = P& Qy

The rows of Xy are orthogonal “latent” descriptors that
are linear combinations of the original descriptors, and
the columns are the projection of the molecules into the
space of those descriptors. In practice, however, simi-
larities between molecules and/or descriptors are more
easily calculated from Py and/or Qk, and the actual
construction of Xy is unnecessary (see Methods).

Deerwester et al.13 showed that given the partial SVD
of X in LSI, it is possible to compute similarities between
terms, between documents, and between a term and a
document. Furthermore, they could compute the simi-
larity of a new document (a column vector that does not
exist in X) to both the terms and the documents in the
database. In terms of chemistry, a new molecule not
already in the database, say a probe, can be added by
first projecting it into the k-dimensional space of the
partial SVD. The projection of a probe vector z would
be y = zTP Zk~L. y can then be treated as a row of Qy
for the purposes of calculating similarity (see below).

Chemistry-flavored LSI calculations of similarity
would be as follows: The similarity of two descriptors i
and j is calculated by computing the dot product
between the ith and jth rows of the matrix PyZx. The
similarity of two molecules i and j can be calculated by
computing the dot product between the ith and jth rows
of the matrix Qx2k. The similarity of a descriptor i to a
molecule j can be calculated by computing the dot
product between the ith row of the matrix P2k and the
jth row of the matrix QxZx. The use of X means that
the dimensions are scaled by the singular values. In
contrast, LaSSI does not use scaling. Therefore, the
calculation of LaSSI similarity between two entities is
as follows:

LaSSI similarity between descriptorsiand j =
2pixpjx/|pi||pj|
X

LaSSI similarity between descriptor i and
molecule j= Zpixqjx/|pi| |
X

LaSSI similarity between molecules i and j =
ZQixqjx/|CIi||CIj|

where x goes from 1 to k. pix and gix are elements of Py
and Qy, respectively. pj is a row of Py and gix is an
element of Q.

This type of similarity, the normalized dot product of
two vectors, is often called the cosine similarity because
the similarity index (—1 to 1) is equal to the cosine of
the angle of the vectors formed by the entities (molecules
or descriptors) relative to the origin of the space.
Ignoring the scaling component X in LaSSI improves
the system’s ability to select similar molecules regard-
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less of whether the probe’s descriptors are well repre-
sented in the database. We will discuss this advantage
in greater detail in the section describing method
extensions.

Methods

There are two distinct phases of processing: (1) constructing
a LaSSI version of a chemical database and (2) calculating the
similarity of the molecules of the LaSSI database to the probe
molecule(s). The first phase is computationally expensive.
However, it only needs to be performed once to create the
database. The second phase, on the other hand, can be
accomplished very quickly — a search of an average-sized
database (~10° molecules) can be performed in under 1 min
on a modest computer workstation. This section describes the
details of both phases.

Constructing a LaSSI Database. Constructing a LaSSI
database requires compiling chemical descriptors for each
molecule represented in the database, creating an index
relating the columns of the matrix to the molecules and
another index relating the rows of the matrix to the chemical
descriptors, creating a chemical descriptor—molecule matrix
representing the molecules in the chemical database, and
performing the SVD of this matrix.

The creation of a descriptor—molecule matrix is straight-
forward. First one must decide on what descriptors to use. In
our experience, the topological descriptors atom pairs and
topological torsions have worked extremely well. Atom pairs
(APs)' are substructures of the form:

AT; — AT; — (distance)

where (distance) is the distance in bonds along the shortest
path between an atom of type AT; and an atom of type AT;.
Atom types encode the species of atom, the number of bonded
non-hydrogen neighbors, and the number of xx electrons. For
instance the descriptor type “n2101005” would mean a nitrogen
with 2 non-hydrogen neighbors and one & electron five bonds
away from an oxygen with one neighbor and no = electrons.
Topological torsions (TTs)! are of the form:

AT, — AT, — AT, — AT,

where i, j, k, and | are consecutively bonded distinct atoms
and the atom types are as described above. All of the APs and/
or TTs in a molecule are counted to form a frequency vector.
We have also experimented with vectors of 3D geometric
descriptors, combinations of 2D and 3D descriptors, and
biological descriptors such as ICsy's for specific receptors.
However, for the purposes of this paper we will restrict our
discussion to AP and TT descriptors.

An in-house topological descriptor generator* is used to
generate AP and TT descriptors from the connection table of
each molecule in the chemical database. A first pass through
the database is performed to create a catalog of unique
descriptors and another catalog of each molecule name. Then,
a second pass creates a list of the frequency of each descriptor
found in each molecule. Recall that the value of matrix element
d;i of X is the frequency of descriptor j in molecule i. The
resulting matrix is used as input for public domain SVD
routines?® which produce the partial SVD of the matrix. We
generally keep the 1000 largest singular values and vectors
for a LaSSI database. The database consists of the singular
values and right and left singular vectors produced by the
SVD.

Querying a LaSSI Database. Querying a LaSSI database
is carried out as follows: A user specifies a probe molecule.
The connection table of the probe molecule (or multiple
molecules in the case of a joint probe) is converted into the
descriptor set of the LaSSI database to create a column vector
z for the probe. This vector is then projected into the reduced
k-dimensional space as y, as described in the Mathematical
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Background section, for some k specified by the user. The
normalized dot products of each molecule vector with the
transformed probe y are calculated and the resulting values
are sorted in descending order, maintaining the index of the
molecule responsible for that value. The user is then presented
with a list of the top-ranked molecules truncated at a user-
defined number, e.g., usually the highest-ranked 300, 500, or
1000 molecules.

By varying the number of singular values (the choice of k),
the user can control the level of fuzziness of the search: larger
values of k produce better approximations of the original
descriptor space than smaller values. In the limiting case of k
= r, r being the rank of the matrix X, Xx = X and all the
descriptors are independent. Alternatively, if k is small, much
of the discrete character of the descriptors will be lost and
similarity will be more “fuzzy”. As we will see, the decision of
what value of k to use depends on the task at hand. A later
section describes includes a discussion of a particular kind of
tuning called singular value calibration wherein the best value
of k is found.

Joint Probes. LaSSI can easily handle “joint probes”, that
is probes that are the descriptor average of two or more
molecules. For each descriptor j,

where M is the number of molecules in the probe. In LaSSI,
the cosine similarity measure is identical whether or not the
sum is divided by M, so the joint probe is equivalent to the
strategy of summing frequencies from the document retrieval
literature. Relevance feedback is a technique of expanding
queries for retrieving text documents from a database that
involves summing the terms found in successfully retrieved
documents with the terms in the original query.* Studies have
shown significant increases in the precision and recall of
document retrieval when relevance feedback is used.?! An in-
depth analysis of the use of joint probes for selecting actives
from a large drug-like chemical database is presented in
another paper in this series,?? and that study shows analogous
improvements.

Singular Vector Calibration. One question that must be
answered, whether the probe consists of a single molecule or
several molecules, is how many singular vectors, k, to use in
the similarity calculation. Published reports of the use of LSI
for searching document databases have typically used 100—
300 singular vectors for modest to large databases.*®?3 Instruc-
tion in the selection of k has been limited in this area to the
following rule of thumb: *“choose small values of k for
conceptual or fuzzy searches, larger values for more literal
searches”. Investigations of LSI have shown poor performance
for some queries when an arbitrary k had been chosen.

Our approach has been to calibrate the selection of k to the
probe at hand whenever more than one active is known for a
given biological activity. Similarity calculations for k = 10, 20,
30, ..., kmax are performed and the rank of each known active
is combined to create a composite score called the “initial
enhancement”.* Initial enhancement is defined as how many
more actives are found in the top N-ranked molecules than
would be expected by chance given the total number of actives.
The value of k with the highest initial enhancement is retained
as Kpest. Presumably this is the value of k that optimizes
searching for new actives. Typically knax = 1000 for a large
chemical database. We usually use N = 300. This is a
somewhat arbitrary but reasonable number; 300 molecules can
be easily tested in a moderate throughput biological assay. In
our companion paper*? we show that rankings with kpest are
20—30% better than when using a static default value of k.

One might wonder why initial enhancements should be
sensitive to k and why kpest depends on the probe and the
biological activity of interest. The first reason is that the
descriptors in only a fraction of the singular vectors are
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Figure 1. Eight angiotensin Il antagonists from the MDL
Drug Data Report database.

relevant to the biological activity. The remaining singular
vectors can be seen as adding noise. The consequence of this
is that an arbitrarily chosen k might work for some probes
and not for others. The effect of calibration is more dramatic
for LaSSI than for LSI. In LSI the singular values = are used
to scale the singular vectors, so that the descriptors in all but
the first few eigenvectors make a negligible contribution. In
contrast, LaSSI does not scale the singular vectors. This means
that if the 500th singular vector captures an important
relationship between a probe and other molecules in the
database with a similar biological activity, it will not be
deprecated to near obscurity by the difference in size of the
500th singular value and the 499 preceding ones. Moreover,
users of LaSSI often present probes that contain descriptors
not found with great frequency in the database. By not scaling
the singular vectors, it is possible to use rare descriptors when
that is necessary.

Descriptor Coloring. Descriptor coloring is a means of
understanding which parts of highly ranked molecules are
responsible for that ranking. A feature of using SVD is that
the similarity between molecules and descriptors can be
calculated directly. Each descriptor has a similarity to the
probe, and these similarities can be used to color the atoms of
ranked molecules. The contribution of each descriptor is
calculated from the products of the SVD — we assign an atomic
coefficient to atom i as a; = };sim;, where j runs over the
descriptors (APs and/or TTs) that contain atom i. For LaSSI
sim; is the cosine similarity of descriptor j to the probe. These
atomic coefficients are then used to highlight atoms, either
by color or by radius.
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Table 1. Portion of the Descriptor—Molecule Matrix for Eight Angiotensin Il Antagonists (the complete matrix has dimensions
286 x 8)

142134 172929 178929 180481 182342 191013 193066 202729
€10c1007 0 0 0 0 1 0 0 1
c20br1005 0 0 1 0 0 0 1 0
c20br1008 0 0 1 0 0 0 1 0
c20br1009 0 0 1 0 0 0 1 0
c20c1001 1 1 1 1 1 1 1 2
€20c1002 1 0 1 1 1 1 1 0
€20c1003 1 0 1 1 1 1 0 1
€20c1005 1 0 0 0 2 0 2 2
€20c1006 2 1 1 1 2 0 1 1
€20c1007 1 0 0 0 0 1 1 0
€20c1008 1 1 0 0 0 0 0 2
€20c2001 2 0 2 2 2 2 1 0
€20c2002 1 0 1 1 1 1 0 0
€20c2003 1 0 1 1 1 0 1 0
€20c2004 1 0 1 1 1 1 1 1
€20c2005 1 1 1 1 1 1 0 0
€20c2006 0 1 0 0 0 1 0 0
€20c2007 0 1 0 0 0 0 0 1
c21br1003 0 0 1 0 0 0 1 0
c21br1004 0 0 2 0 0 0 2 0
c21br1005 0 0 3 0 0 0 3 0
c21br1006 0 0 1 0 0 0 1 0
€21c1003 0 1 0 0 0 0 0 1
c21c1004 0 0 0 0 1 0 0 1
€21¢1005 0 1 0 0 0 1 0 4
€21c1006 0 2 0 0 0 0 0 4
€21¢1007 2 0 0 1 3 1 4 6
€21¢1008 4 2 2 4 4 2 2 4
€21c1009 2 2 1 3 2 3 0 0
c21c1011 1 0 0 0 1 0 0 0
€21c1012 3 1 0 1 3 0 2 4
€21c1013 3 2 1 2 3 1 4 2
c21c1014 1 1 2 1 1 2 2 0
c21c1015 0 0 1 0 0 1 0 0
€21c2002 2 5 2 2 2 4 2 2
€21c2003 2 4 1 2 3 4 1 3
€21c2004 0 2 0 2 1 4 0 3
€21c2005 2 4 2 7 3 4 2 3
€21c2006 5 2 3 10 6 7 4 3
€21c2007 6 4 4 9 6 9 2 3
€21c2008 3 5 3 4 3 6 2 0
€21c2009 1 2 1 1 1 2 1 0
€21c2010 3 0 1 3 3 1 1 0
c21c2011 4 1 3 4 4 3 3 2
€21c2012 3 3 4 3 3 4 3 1

Table 2. Portion of the (286 x 8) P Matrix

1 2 3 4 5 6 7 8

1 0.0055 0.0222 0.0001 —0.0297 —0.0068 —0.0246 0.0210 —0.0321

2 0.0053 —0.0039 0.0343 0.0189 0.0009 0.0016 —0.0217 —0.0164

3 0.0053 —0.0039 0.0343 0.0189 0.0009 0.0016 —0.0217 —0.0164

4 0.0053 —0.0039 0.0343 0.0189 0.0009 0.0016 —0.0217 —0.0164

5 0.0251 0.0107 0.0115 —0.0290 0.0287 —0.0071 0.0266 0.0035

6 0.0167 —0.0195 0.0145 —0.0100 —0.0431 0.0167 —0.0234 —0.0124

7 0.0169 —0.0016 0.0021 —0.0285 —0.0263 0.0360 0.0517 —0.0130

8 0.0180 0.0245 0.0375 —0.0789 —0.0050 —0.0891 —0.0419 —0.0124

9 0.0247 0.0158 0.0159 —0.0269 —0.0562 —0.0391 —0.0008 0.0865

10 0.0076 —0.0335 0.0112 —0.0210 0.0061 —0.0233 —0.0176 0.0156

11 0.0106 0.0202 0.0008 —0.0337 0.0580 —0.0287 0.0669 0.0780

12 0.0311 —0.0340 0.0122 —0.0171 —0.0973 0.0509 0.0036 —0.0196

13 0.0143 —0.0145 —0.0023 —0.0073 —0.0542 0.0342 0.0270 —0.0072

14 0.0138 —0.0009 0.0237 —0.0059 —0.0516 0.0177 —0.0393 0.0290

15 0.0193 —0.0066 0.0189 —0.0310 —0.0151 0.0185 0.0013 —0.0182

16 0.0175 —0.0101 —0.0140 0.0159 —0.0383 0.0069 0.0276 0.0203

17 0.0061 —0.0142 —0.0210 0.0192 0.0245 —0.0283 0.0165 —0.0139

18 0.0057 0.0173 —0.0074 0.0020 0.0439 —0.0256 0.0253 0.0217

19 0.0053 —0.0039 0.0343 0.0189 0.0009 0.0016 —0.0217 —0.0164

20 0.0106 —0.0077 0.0685 0.0377 0.0018 0.0033 —0.0435 —0.0328

285 0.0053 —0.0039 0.0343 0.0189 0.0009 0.0016 —0.0217 —0.0164

286 0.0082 —0.0027 0.0518 0.0402 —0.0094 0.0208 0.0069 —0.0277
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Table 3. Complete (8 x 8) = Matrix
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Table 4. Complete (8 x 8) QT Matrix

0.2806 0.3944 0.3617
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Figure 2. Plot of molecules and descriptors in two dimen-
sions. Molecules are represented by red squares, descriptors
by blue circles.

Results

The concepts described previously can be best under-
stood in the context of a small, illustrative example.
Angiotensin Il plays a critical role in regulation of fluid
and electrolyte balance and arterial blood pressure.
Increased activity of the renin—angiotensin system can
result in hypertension and disorders of fluid and elec-
trolyte homeostasis.?* Two subtypes of the angiotensin
Il receptor, AT1 and ATy, located in the plasma mem-
brane of cells are found in varying proportions at several
sites within the body including vascular smooth muscle,
adrenal cortex, brain, and kidney. Nonpeptide angio-
tensin Il antagonists which have activity against AT,
have been used to treat hypertension in human beings.
Eight such molecules described in the MDL Drug Data
Report (MDDR) database?® are shown in Figure 1. Atom
pair descriptors were calculated for each of these
molecules. Each descriptor found in at least two differ-
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Figure 3. Probe molecule losartan is projected into two
dimensions, and molecules with a cosine similarity of >0.9 are
labeled.

ent molecules was kept to create the descriptor—
molecule matrix, of which a portion is shown in Table
1. Applying the SVD to this matrix results in the three
matrices shown in Tables 2—4. By setting k = 2, we can
plot the values of the first two singular vectors for each
molecule and descriptor in two dimensions. Figure 2
shows a plot of descriptors and molecules. It is interest-
ing to note that the most nitrogen-rich molecule 202729
is nearly collinear with the origin and the descriptors
n21c2106 and n21c2105 (using atoms from the tetrazole
and the biphenyl), while the molecule 191013 is collinear
with the descriptor 011c2105. Descriptors n21c2106 and
n21c2105 are just one pair of descriptors that are highly
correlated in this set of molecules.

We can calculate the pairwise similarity matrix for
the eight molecules using Q. We can also project a
ninth molecule, different from the original eight, into
the 2D space and then calculate the similarity of the
eight molecules to this probe, losartan (structure in
Figure 4). Descriptors unique to losartan are ignored.
The result of the projection of losartan into the space of
the other eight molecules is shown in Figure 3. Cosine
similarity between each of the eight A-l1l antagonists
and losartan can be computed, producing the following
ranking:

rank molecule cosine similarity
1 182342 0.994
2 172929 0.968
3 202729 0.947
4 180481 0.942
5 178929 0.865
6 193066 0.372
7 142134 0.019
8 191013 —0.140

The molecules similar to losartan at >0.9 are empha-

sized in Figure 3.
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Figure 4. Descriptor colorings of the most and least similar
molecules (184342, 191013) to losartan. Radius of the atoms
indicates similarity between the descriptors containing those
atoms and the losartan probe.

One of the issues raised in the Introduction was that
chemical descriptors are correlated and that some
descriptors count more than others in the reduced-
dimensional space. This is illustrated in Figure 4,
wherein “coloration” is done against losartan as the
probe at k = 2. The radii of the atoms are proportional
to a;. First we note than when losartan is compared
against itself as a probe, not all atoms are equally
emphasized. In particular, the tetrazole nitrogens and
the sp? nitrogen in the imidazole appear to count more.
We can examine the relationships LaSSI has uncovered
with the other molecules by looking at the top-ranked
molecule (182342) and the last-ranked molecule (191013)
from the table above. Losartan and 182342 are very
similar, but again not all parts of 182342 are equally
emphasized. The tetrazole and pyrimidine nitrogens
appear to count more than any of the carbon atoms in
the biphenyl. On the other hand, we see that nearly all
the atoms of 191013 have a small radius, consistent with
that molecule having a small similarity to the probe.

Discussion

We have extended a method (LSI), which was devel-
oped for calculating the similarity between text docu-
ments, to create an analogous method (LaSSl) that can
be applied to molecules. This approach inherently
assumes that the chemical descriptors in a database are
not independent but associated, much as terms in a
document are associated. Using the singular value
decomposition of an appropriately constructed descrip-
tor—molecule matrix, one can uncover these associations
and use them to calculate chemical similarity. In cases
where more than one compound of interest is known,
joint probes and singular value calibration can be used
to improve LaSSI's performance. Finally, the user can
color the atoms of probe and database molecules to
reveal those structural components responsible for a
molecule’s similarity score.

LSl and LaSSI as originally formulated are designed
to start with integer frequencies, of terms and substruc-
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ture descriptors, respectively. However, any type of real
number descriptors can be used in addition to or in place
of integer frequencies. The only additional complication
with real number descriptors is that, not being naturally
commensurate with each other, they usually have to be
normalized before processing.

There are certain similarities of LaSSI to principal
components analysis?® wherein molecules are projected
into reduced-dimensional space defined by orthogonal
axes. Indeed SVD can be used to calculate principal
components.1® Sometimes principal components analysis
is used to visualize chemical data and is then restricted
to low numbers of dimensions. In other applications,
molecules are clustered in the low-dimensional space.
The principal component axes and the number of
principal components depend only on the variance in
the structural data of the molecules. Activity data is
generally, although not always,?” ignored. When that
is the case, the most relevant descriptors to activity may
not be in the principal components that are retained.
In LaSSI, we retain many of the singular vectors and
can adjust the number of vectors to get the best
correlation with similarity in that space with activity.
While principal components analysis lets us calculate
the similarity between molecules, LaSSI allows us also
to calculate the similarity between descriptors and
between descriptors and molecules.

The example we show here involves only a few
molecules, but LaSSI can be routinely applied to tens
or hundreds of thousands of molecules. In our compan-
ion paper!? we show the application of LaSSI to search-
ing a large database of drug-like moleclues.
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